DKPro WSD: A Generalized UIMA-based Framework for Word Sense Disambiguation
نویسندگان
چکیده
Implementations of word sense disambiguation (WSD) algorithms tend to be tied to a particular test corpus format and sense inventory. This makes it difficult to test their performance on new data sets, or to compare them against past algorithms implemented for different data sets. In this paper we present DKPro WSD, a freely licensed, general-purpose framework for WSD which is both modular and extensible. DKPro WSD abstracts the WSD process in such a way that test corpora, sense inventories, and algorithms can be freely swapped. Its UIMA-based architecture makes it easy to add support for new resources and algorithms. Related tasks such as word sense induction and entity linking are also supported.
منابع مشابه
معرفی رویکردی ماشینی با استفاده از الگوریتم لسک و برچسبدهی نحوی جهت رفع ابهام از معنای کلمات
The present study introduces a machine-based approach for word sense disambiguation (WSD). In Persian, a morphologically complex language, POS tag which lots of homographs are made, one way for doing WSD is allocating the right Part Of Speech (POS) tags to words prior to WSD. Since the frequency of noun and adjective homographs in different Persian POS tag text corpuses is high, POS tag disambi...
متن کاملA New Minimally-Supervised Framework for Domain Word Sense Disambiguation
We present a new minimally-supervised framework for performing domain-driven Word Sense Disambiguation (WSD). Glossaries for several domains are iteratively acquired from the Web by means of a bootstrapping technique. The acquired glosses are then used as the sense inventory for fullyunsupervised domain WSD. Our experiments, on new and gold-standard datasets, show that our wide-coverage framewo...
متن کاملWord Sense Disambiguation using Association Rules: A Review
Now days, Word Sense Disambiguation (WSD) is a vital area which is very useful in today’s world. Many WSD algorithms are available in literature; we have chosen to an optimal and portable WSD algorithm. We are discussed the supervised, unsupervised, and knowledge-based approaches for WSD. In this paper we are discuses that association rules, Knowledge-based WSD, Corpus-based WSD.
متن کاملWord Sense Disambiguation with Semi-Supervised Learning
Current word sense disambiguation (WSD) systems based on supervised learning are still limited in that they do not work well for all words in a language. One of the main reasons is the lack of sufficient training data. In this paper, we investigate the use of unlabeled training data for WSD, in the framework of semi-supervised learning. Four semisupervised learning algorithms are evaluated on 2...
متن کاملWord Sense Disambiguation for Automatic Taxonomy Construction from Text-Based Web Corpora
In this paper, we propose the Automatic Taxonomy Construction from Text (ATCT) framework for building taxonomies from text-based Web corpora. The framework is composed of multiple processing steps. Firstly, domain terms are extracted using a filtering method. Subsequently, Word Sense Disambiguation (WSD) is optionally applied in order to determine the senses of these terms. Then, by means of a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013